Table of Contents

<table>
<thead>
<tr>
<th>Application</th>
<th>#</th>
<th>Instruments used</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geomorphology</td>
<td>A</td>
<td>RockSchmidt, Original Schmidt</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age evaluation, relative age dating, exposure age estimation and prediction of weathering grade of rock and moraines as well as indication of ice-sheet thickness.</td>
<td></td>
</tr>
<tr>
<td>Rock Properties</td>
<td>B</td>
<td>RockSchmidt, Original Schmidt</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correlating with uniaxial compressive strength, point load index, Young’s modulus, rock mass strength, predicting elastic properties of intact rocks, rebound hardness consistency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Equotip</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Pundit (Ultrasonic)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correlation of ultrasonic longitudinal wave speed with rock density, engineering properties of rock including uniaxial compressive strength and Young’s modulus, relative surface ages of selected Alpine rock glacier, rock hardness and its relationship to limestone dissolution, shear wave propagation in rocks and other lossy media.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>RockSchmidt, Original Schmidt</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indexing rock for machine tunneling, predicting the saw ability of carbonate rocks mechanical rock properties, rock cutting machine performance prediction, predicting TBM penetration rates.</td>
<td></td>
</tr>
</tbody>
</table>
A - Geomorphologic Applications using RockSchmidt, respectively Original Schmidt

A4 Ayday, C. Goktan R. M., 1992: Correlation between N-type and L-type Schmidt hammer rebound values obtained during field testing, Eurock 92. Thomas Telford, London, pp. 47-50. Turkey

NDT OF ROCK

LIST OF REFERENCES

A40 Sachi Wakasa1, Hiroyuki Matsuoka2, Yukiya Tanaka3, and Yukinori Matsukura4, 2005: Estimation of episodic exfoliation rates of rock sheets on a granite dome in Korea from cosmogenic nuclide analysis, 1: Life and Environmental Sciences, University of Tsukuba. Ibaraki 305-8572, japan, 2: lv1circo Analyses Laboratory, Tandem Accelerator, the University of Tokyo, Tokyo 113-0032. Japan – 3: Department of Geography, Kyunghee University, Seoul 130-70 I, Korea

A44 Tao Tang (1998): Field Testing of Rock Hardness and its Relationship to Limestone Dissolution in Gulin, southern China, Department of geography and Planning, State university New York, USA

B - Rock properties Applications using RockSchmidt, respectively Original Schmidt

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>B4</td>
<td>Ayday, C. Goktan R. M., 1992: Correlation between N-type and L-type Schmidt hammer rebound values obtained during field testing, Eurock’92. Thomas Telford, London, pp. 47-50. Turkey</td>
</tr>
<tr>
<td>B5</td>
<td>Aydin Adnan 2008: ISRM suggested method for determination of the Schmidt hammer rebound hardness: Revision version, Department of Geology and Geological Engineering, The University of Mississippi,</td>
</tr>
<tr>
<td>B6</td>
<td>Aydin, A. Basu, 2005: The Schmidt hammer in rock material characterization. Dep. Of Earth Sience, University of Hong-Kong, Pockklulam Rd. Hong Kong China</td>
</tr>
<tr>
<td>B9</td>
<td>Daniel A. Vellone, Charles Merguerian, 2007: MEASURING ENGINEERING PROPERTIES OF NYC ROCKS USING A SCHMIDT REBOUND HAMMER – PRELIMINARY RESULTS. USA</td>
</tr>
</tbody>
</table>
NDD OF ROCK
LIST OF REFERENCES

C - Rock properties Applications using mainly Equotipo

C5 Atsushi Saotome , Ryunoshi Yoshinaka , Masahiko Osada , Hiroyasu Sugiyama 2000: Constituent material properties and clast-size distribution of volcanic breccia

a: Civil Engineering and Architecture Department, Electric Power Development Co., Ltd, 6-15-1, Ginza, Chuo, Tokyo 104-8165, Japan, b: Department of Civil and Environmental Engineering, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570, Japan

C7 Hisashi Aoki* and Yukinori Matsukura, 2006: A new technique for non-destructive field measurement of rock-surface strength: an application of the Equotip hardness tester to weathering studies Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

C9 Hack R., Huisman1 M., 2002: ESTIMATING THE INTACT ROCK STRENGTH OF A ROCK MASS BY SIMPLE MEANS Netherlands

C12 Meulenkamp F., Alvarez Grima M., 1998: Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness Section Engineering Geology, Department of Applied Earth Sciences, Faculty of Civil Engineering, Delft University of Technology, Delft, Netherlands

C13 Sachi Wakasa, Hiroyuki Matsuzaki, Yukinori Matsukura, 2005: Estimation of episodic exfoliation rates of rock sheets on a granite dome in Korea from cosmogenic nuclide analysis 1: Life and Environmental Sciences, University of Tsukuba. Ibaraki 305-8572, japan, 2: Ivc1cro Analys1s Laboratory, Tandem Accelerator, the University of Tokyo, Tokyo 113-0032. Japan, 3: Department of Geography, Kyunghee University, Seoul 130-70 I, Korea

© Proceq SA 2013
NDT OF ROCK
LIST OF REFERENCES

D - Rock properties Applications using Ultrasonic

D16 Tao Tang (1998): Field Testing of Rock Hardness and its Relationship to Limestone Dissolution in Gulin, southern China, Department of geography and Planning, State university New York, USA

Quality classification of stones for cutting with gang saws
E - Special properties of Rock using RockSchmidt respectively Original Schmidt

E7 S. R. Torabi, M. Ataeo, M. Javanshir 2011: Application of Schmidt hammer rebound number for estimating rock strength under specific geological conditions, Shahrood University Iran, journal of Mining & Environment Iran

© Proceq SA 2013