Proceq Europe Ringstrasse 2 CH-8603 Schwerzenbach Phone +41-43-355 38 00 Fax +41-43-355 38 12 info-europe@proceq.com # Proceq UK Ltd. Bedford i-lab, Priory Business Park Stannard Way Bedford MK44 3RZ United Kingdom Phone +44-12-3483-4515 info-uk@proceq.com ## Proceq USA, Inc. 117 Corporation Drive Aliquippa, PA 15001 Phone +1-724-512-0330 Fax +1-724-512-0331 info-usa@proceq.com ## **Proceq Asia Pte Ltd** 12 New Industrial Road #02-02A Morningstar Centre Singapore 536202 Phone +65-6382-3966 Fax +65-6382-3307 info-asia@proceq.com #### **Proceq Rus LLC** UI. Optikov 4 korp. 2, lit. A, Office 410 197374 St. Petersburg Russia Phone/Fax + 7 812 448 35 00 info-russia@proceq.com #### **Proceq Middle East** P. O. Box 8365, SAIF Zone, Sharjah, United Arab Emirates Phone +971-6-557-8505 Fax +971-6-557-8606 info-middleeast@proceq.com #### Proceq SAO Ltd. Rua Paes Leme, 136, cj 610 Pinheiros, São Paulo Brasil Cep. 05424-010 Phone +55 11 3083 38 89 info-southamerica@proceq.com #### **Proceq China** Unit B, 19th Floor Five Continent International Mansion, No. 807 Zhao Jia Bang Road Shanghai 200032 Phone +86 21-63177479 Fax +86 21 63175015 info-china@proceq.com # Operating Instructions Shear Wave Transducers 250 kHz # **Measuring with Shear Wave Transducers** # Calibration of the shear-wave transducer - 1. Put a small amount of standard coupling gel on the transducers. - 2. Firmly press the transducers on either side of the 25 µs calibration rod (Part No 710 10 028). Make sure that the coupling gel is properly distributed and that no air is trapped between the transducer and the calibration rod. - 3. Select the 250 kHz transducer from the list of supported transducers (see Pundit Lab manual chapter 3 for more details). - 4. Zero the instrument as described in the Pundit Lab manual chapter 2.1. Standard coupling gel Please note the following issue when using shear wave transducers. # **Performing measurements** When performing measurements with the 250 kHz shear wave transducers it is crucial to use the special shear wave coupling paste, otherwise shear waves cannot be properly transmitted into the object under test. The shear wave coupling paste is a non-toxic, water soluble organic substance of very high viscosity. Furthermore, it is necessary to use Pundit Link's waveform display in Live View mode in order to manually locate the onset of the shear wave echo. Since the latter is always preceded by a relatively weak P-wave signal. The transit time determined by Pundit Lab automatic triggering, would correspond to the longitudinal instead of the shear wave. # **Correct Transducer Alignment** When carrying out a measurement with shear wave transducers it is imperative that the two transducers are correctly aligned. This is because the shear waves are generated in one plane only. # **Misaligned Transducers** The worst case occurs when the transducers are aligned at right angles to each other. In this case the shear wave signal is not picked up at all by the receiver transducer. The PunditLink waveforms shown below shows the same measurement with - misaligned transducers (above) almost no S-wave component - and correctly aligned transducers (below) very strong S-wave component The shear wave signal arrives after $55 \mu s$. Rotating the transducers while performing a measurement and watching how the shear wave component increases and decreases allows the user to accurately pinpoint the trigger point of the shear wave. #### Recommendations - If possible, always measure the P-wave first. This will give an indication of where to look for the S-wave (roughly twice the P-wave transmission time). - Begin with a low amplification setting to ensure that the received signal is not saturated. - Check the transducer alignment, by lining up the BNC connectors. - Try rotating the receiver transducer through 90°C. This will allow you to see the shear wave component increasing and decreasing. # Using P and S wave measurements to determine Poisson's Ratio and Modulus of Elasticity This table taken from Wikepedia shows how elastic properties of materials may be determined, provided that two are known. | v-d-e | | | | Elast | ic moduli for homog | eneous isotropic ma | aterials | | | [hide] | |-----------------------|--|------------------------|------------------------------------|-------------------------|--------------------------------------|-------------------------------|------------------------------------|-------------------------------|-------------------------|------------------------| | | $ \textit{Bulk modulus } (K) \bullet \textbf{Young's modulus } (E) \bullet \textit{Lamé's first parameter } (\lambda) \bullet \textit{Shear modulus } (G) \bullet \textit{Poisson's ratio } (\forall) \bullet \textit{P-wave modulus } (M) $ | | | | | | | | | | | Conversion formulas | | | | | | | | | | [hide | | fomogeneo
ormulas. | ous isotropic linear | elastic materials h | ave their elastic prop | erties uniquely de | termined by any two mod | duli among these, thus | given any two, any othe | er of the elastic moduli can | be calculated accord | ding to these | | | (λ, G) | (E, G) | (K, λ) | (K, G) | (λ, ν) | (G, ν) | (E, ν) | (K, ν) | (K, E) | (M, G) | | K = | $\lambda + \frac{2G}{3}$ | $\frac{EG}{3(3G-E)}$ | | | $\frac{\lambda(1+\nu)}{3\nu}$ | $\frac{2G(1+\nu)}{3(1-2\nu)}$ | $\frac{E}{3(1-2\nu)}$ | | | $M - \frac{4G}{3}$ | | E = | $\frac{G(3\lambda+2G)}{\lambda+G}$ | | $\frac{9K(K-\lambda)}{3K-\lambda}$ | $\frac{9KG}{3K+G}$ | $\frac{\lambda(1+\nu)(1-2\nu)}{\nu}$ | $2G(1 + \nu)$ | | $3K(1 - 2\nu)$ | | $\frac{G(3M-4G)}{M-G}$ | | $\lambda =$ | | $\frac{G(E-2G)}{3G-E}$ | | $K - \frac{2G}{3}$ | | $\frac{2G\nu}{1-2\nu}$ | $\frac{E\nu}{(1+\nu)(1-2\nu)}$ | $\frac{3K\nu}{1+\nu}$ | $\frac{3K(3K-E)}{9K-E}$ | M-2G | | G = | | | $\frac{3(K-\lambda)}{2}$ | | $\frac{\lambda(1-2\nu)}{2\nu}$ | | $\frac{E}{2(1+\nu)}$ | $\frac{3K(1-2\nu)}{2(1+\nu)}$ | $\frac{3KE}{9K-E}$ | | | $\nu =$ | $\frac{\lambda}{2(\lambda+G)}$ | $\frac{E}{2G} - 1$ | $\frac{\lambda}{3K-\lambda}$ | $\frac{3K-2G}{2(3K+G)}$ | | | | | $\frac{3K-E}{6K}$ | $\frac{M-2G}{2M-2G}$ | | M = | $\lambda + 2G$ | $\frac{G(4G-E)}{3G-E}$ | $3K - 2\lambda$ | $K + \frac{4G}{3}$ | $\frac{\lambda(1-\nu)}{\nu}$ | $\frac{2G(1-\nu)}{1-2\nu}$ | $\frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$ | $\frac{3K(1-\nu)}{1+\nu}$ | $\frac{3K(3K+E)}{9K-E}$ | | By measuring a P-wave transmission time and an S-wave transmission time with Pundit Lab, we are able to determine the P-wave modulus (M) and the Shear modulus (G). P-wave modulus (M): $$M = \rho V_p^2$$ Where is the density of the material and Vp is the pulse velocity of the P-wave. Shear-modulus (G): $G = \rho V_s^2$ Where • is the density of the material and Vs is the pulse velocity of the S-wave. Using the equations above we can determine Poisson's Ratio (•): $$v = \frac{M-2G}{2M-2G} = \frac{\rho V_p^2 - 2\rho V_s^2}{2\rho V_p^2 - 2\rho V_s^2} = \frac{V_p^2 - 2V_s^2}{2V_p^2 - 2V_s^2} = \frac{V_p^2 - 2V_s^2}{2(V_p^2 - V_s^2)}$$ So Poisson's ratio can be determined simply by measuring the P-wave velocity and the S-wave velocity and it is not even necessary to know the density of the material. Once Poisson's ratio is known, the elastic modulus can be calculated from the equation: $E=2G(1+\nu)$ For this it is necessary to know the density of the material. # Calculation Poisson's Ratio and Modulus of Elasticity in PunditLink The measurement with the P-wave transducer is not described here as it is a standard direct measurement as described in the Pundit Lab manual. If using a separate P-wave transducer, it is recommended to measure with that transducer first. Alternatively, it is possible to measure both the P and S-wave component by using the S-wave transducer only. Practical Example made on a concrete block: Density of the concrete block is 2400 kg/m3. The upper measurement shows the S-wave transmission time is $55.2~\mu s$. The lower measurement shows the P-wave transmission time, $30.8 \mu s$. Select both measurements in PunditLink so that they are highlighted then select: "Calculate/Poisson's Ratio + E-modulus" The following window will be shown in which you must enter the density of the material under test The calculation of Poisson's rate and E-modulus is done automatically. ## **Alternative method** Alternatively it is possible to use only an S-wave transducer as this type of transducer also has a P-wave component. The P-wave cursor will appear automatically. It is possible to activate a second cursor by clicking on the Amplitude axis with the CTRL button held down. This allows you to drag the second cursor to the shear wave trigger point "t2". To obtain the E-modulus you must enter the density, by clicking on the blue Density figure in the column to the right of the graph. Enter the density in the pop-up window as shown and the E-modulus will be calculated automatically. To obtain the E-modulus you must enter the density, by clicking on the blue Density figure in the column to the right of the graph. Enter the density in the pop-up window as shown and the E-modulus will be calculated automatically.